A Lagrangian Relaxation for Golomb Rulers

نویسندگان

  • Marla R. Slusky
  • Willem Jan van Hoeve
چکیده

The Golomb Ruler Problem asks to position n integer marks on a ruler such that all pairwise distances between the marks are distinct and the ruler has minimum total length. It is a very challenging combinatorial problem, and provably optimal rulers are only known for n up to 26. Lower bounds can be obtained using Linear Programming formulations, but these are computationally expensive for large n. In this paper, we propose a new method for finding lower bounds based on a Lagrangian relaxation. We present a combinatorial algorithm that finds good bounds quickly without the use of a Linear Programming solver. This allows us to embed our algorithm into a constraint programming search procedure. We compare our relaxation with other lower bounds from the literature, both formally and experimentally. We also show that our relaxation can reduce the constraint programming search tree considerably.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Relaxations for Combinatorial Optimization

In this thesis we explore two methods of computing lower bounds. We first discuss the Lagrangian Relaxation as it applies to the Golomb ruler problem, and then we explore adding multi-valued decision diagrams to an additive bounding scheme. The Golomb Ruler Problem asks to position n integer marks on a ruler such that all pairwise distances between the marks are distinct and the ruler has minim...

متن کامل

A review of the available construction methods for Golomb rulers

We collect the main construction methods for Golomb rulers available in the literature along with their proofs. In particular, we demonstrate that the Bose-Chowla method yields Golomb rulers that appear as the main diagonal of a special subfamily of Golomb Costas arrays. We also show that Golomb rulers can be composed to yield longer Golomb rulers.

متن کامل

Enumeration of Golomb Rulers and Acyclic Orientations of Mixed Graphs

A Golomb ruler is a sequence of distinct integers (the markings of the ruler) whose pairwise differences are distinct. Golomb rulers, also known as Sidon sets and B2 sets, can be traced back to additive number theory in the 1930s and have attracted recent research activities on existence problems, such as the search for optimal Golomb rulers (those of minimal length given a fixed number of mark...

متن کامل

On the Design of Optimum Order 2 Golomb Ruler

A Golomb ruler with M marks can be defined as a set {ai} of integers so that all differences δij = aj − ai, i 6= j, are distinct. An order 2 Golomb ruler is a Golomb ruler such that all differences δijk` = |δk` − δij |, {i, j} 6 = {k, `}, are distinct as much as possible. Contruction of optimum order 2 Golomb ruler, i.e., of rulers of minimum length, is a highly combinatorial problem which has ...

متن کامل

Genetic Algorithm Approach to the Search for Golomb Rulers

GOLOMB RULERS Stephen W. Soliday soliday@gar eld.ncat.edu Abdollah Homaifar homaifar@gar eld.ncat.edu Department of Electrical Engineering North Carolina A&T State University Greensboro, North Carolina 27411 Gary L. Lebby lebby@gar eld.ncat.edu Abstract The success of genetic algorithm in nding relatively good solutions to NP-complete problems such as the traveling salesman problem and job-shop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013